Cover Problem
OptEnrichedSetCover.CoverParams — TypeCoverParams(; [sel_tax=0.0], [set_shape=1.0],
[min_weight=1E-2], [mask_discount=0.9], [setXset_factor=1.0],
[uncovered_factor=0.1], [covered_factor=0.001],
[set_relevance_shape=0.5], [set_relevance_min=0.5]) -> CoverParamsSpecify parameters for the AbstractCoverProblem. One can specify a non-default value for a particular parameter.
See cover quality score for the detailed description of the parameters.
Arguments
sel_tax: $\epsilon$, the constant added to the set score of each selected set to penalize the number of sets in the coverset_shape: $\beta$, applied to set or set×set scoresmin_weight: minimal non-zero set probability ???mask_discount: $\alpha$, how much the overlap score of each subsequent mask (from most to less enriched) is discountedsetXset_factor: $w_r$, the weight of redundancy cover quality component (setXset_scorescale), 0 = no redunancy penaltyuncovered_factor: $w_u$, the weight of uncovered hits component in cover qualitycovered_factor: $w_c$, the weight of covered non-hits component in cover qualityset_relevance_shape: $\beta_L$, how much set relevance affects set score, 0 = no effectset_relevance_min: $L_{\min$, if shaped relevance is below, it's set toset_relevance_min
OptEnrichedSetCover.AbstractCoverProblem — TypeAbstractCoverProblem{T}Optimal Enriched-Set Cover problem – choose the sets from the collection 𝒞 to cover the masked(selected) elements M. The optimal sets cover C = {c₁, c₂, ..., cₙ} ⊂ 𝒞 has to deliver 3 goals:
- be relevant (i.e. minimize the P-values of
Mandcᵢsets overlap) - be minimal (i.e. minimize the number of sets in
C) - be non-redundant (i.e. minimize the P-values of the pairwise non-overlap of
Csets with each other).
Fuzzy set selection is possible – each set is assigned a weight from [0, 1] range.
OptEnrichedSetCover.MultiobjCoverProblem — TypeMulti-objective optimal Enriched-Set Cover problem.
See "Method Description" for more details.
OptEnrichedSetCover.MultiobjOptimizerParams — TypeParameters for the Borg-based optimization of MultiobjCoverProblem.
See optimize.
OptEnrichedSetCover.optimize — Functionoptimize(problem::MultiobjCoverProblem,
[opt_params::MultiobjOptimizerParams]) -> MultiobjCoverProblemResultOptimize MultiobjCoverProblem and return the result. Uses Borf multi-objective optimization method from BlackBoxOptim.jl package.
OptEnrichedSetCover.MultiobjProblemSoftFold2d — TypeTransforms the 4-component cover quality score into 2-component score that makes the highly redundant solutions dominated by any less redundant ones.
See "Cover score convolution" section for the discussion.
Arguments
setXset_factor: $w_r$, same as inCoverParamsuncovered_factor: $w_u$, same as inCoverParamscovered_factor: $w_c$, same as inCoverParamsratio_threshold: $k_{\max}$, defaults to 1shape: $\alpha_k$, defaults to 0.5.
OptEnrichedSetCover.score — Functionscore(w::AbstractVector{Float64}, problem) -> NTuple{4, Float64}Unfolded multiobjective score (fitness) of the OESC coverage.
w: probabilities of the sets being covered
See "Cover quality".
OptEnrichedSetCover.MultiobjCoverProblemResult — TypeThe result of optimize. Contains the solutions on the Pareto front: weights of the annotation terms and corresponding cover scores.